GeoNet WP2
IPv6 – C2C NET

Geographic addressing and routing for vehicular communications

Manabu Tsukada INRIA – Mines ParisTech, France

July 2009 Frankfurt (Oder)
Outline

- Overview of IPv6 over C2C NET
- Missing features
 - Next hop determination
- Design of IPv6 over C2C NET
 - Unicast using Geo-unicast
 - Multicast using Geo-broadcast
 - Multicast using Topo-broadcast
 - Anycast using Geo-anycast
- Interface management and IP forwarding
 - IPv6-C2C NET interface
 - Routing
 - Pre-experiment
- Conclusion
Architecture

Upper layer

IP

1. IP Forwarding
2. NEMO
3. Geographic addressing/Position calculation
4. Geo-routing (Position based routing)
5. Location Management
 - Beaconsing
 - Location Table
 - Location Service
6. IPv6 over C2C NET

C2C NET

1. Routing
2. IPv6 over C2C NET
3. Geographic addressing/Position calculation
4. Geo-routing (Position based routing)
5. Location Management
 - BeamConing
 - Location Table
 - Location Service
6. IPv6 over C2C NET
7. Lower layer (egress interface, 802.11p)
IPv6 over C2C NET

GeoNet WP2 IPv6-C2C NET

08/07/2009
Next hop determination

- Finding OBU3 from destination IPv6 address

Five Propositions
- Routing and Address Resolution like Ethernet
 - (1) Static routing
 - (2) Dynamic routing
- (3) Host Network Association (HNA) like OLSR
- (4) NDP extension
- (5) DNS like solution
Address Resolution over Ethernet

- **Routing (L3)**
 - (1) Static: \# route -A inet6 add MNP2::/64 gw Prefix3::R2 dev eth2
 - (2) Dynamic: OSPF, RIP, etc.

- **Address resolution (L2-3)**
 - Address Resolution Protocol (ARP) IPv4
 - Neighbor Discovery Protocol (NDP) IPv6
(3) Host and Network Association in OLSR

- Host and Network Association (HNA)
 - To find network behind OLSR nodes which connect to non-OLSR interface
- For us
 - To find network behind C2C NET nodes which connect to non-C2C NET interface
(4) NDP extension

- Router Advertisement in NDP (Neighbor Discovery Protocol)
 - To provide on-link information
 - Also default gateway information

- For us
 - To provide prefix information
 - [MNP2::/64 → fe80::C2CID2]

![Diagram showing NDP extension and IP routing table on OBU1]

IP Routing table on OBU1
- [default route (::/0) -- fe80::C2CID3]
- [MNP2::/64 -- fe80::C2CID2]
Approaches Analysis

- Matching between In-vehicle network and C2C NET ID
 - **Difficulty**: implementation work needed (impact on architecture?)
 - **Scalability**: To support large scale network
 - **Signaling overhead**: Number of packets distributed in C2C NET
 - **Delay**: Wait time to resolve C2C NET ID from in-vehicle network

- Best solutions
 I. (3) HNA like extension \rightarrow need specification in C2C NET
 II. (1) Static route configuration \rightarrow Only for demo
 III. (2) Dynamic routing protocol \rightarrow Easy solution

Approach comparison

<table>
<thead>
<tr>
<th>Approach</th>
<th>Difficulty</th>
<th>Scalability</th>
<th>Signaling overhead</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Static route configuration</td>
<td>Easy</td>
<td>no</td>
<td>No overhead</td>
<td>No delay</td>
</tr>
<tr>
<td>(2) Dynamic routing protocol</td>
<td>Easy</td>
<td>yes</td>
<td>Periodic signaling</td>
<td>Depend on frequency and RTT</td>
</tr>
<tr>
<td>(3) HNA like extension</td>
<td>Difficult</td>
<td>yes</td>
<td>Optimized signaling</td>
<td>Depend on frequency and RTT</td>
</tr>
<tr>
<td>(4) RA extension</td>
<td>Difficult</td>
<td>yes</td>
<td>Periodic signaling</td>
<td>Depend on frequency and RTT</td>
</tr>
<tr>
<td>(5) DNS like discovery</td>
<td>Difficult</td>
<td>yes</td>
<td>Once for each OBU</td>
<td>RTT between server and client</td>
</tr>
</tbody>
</table>
SAP 1.4 (IPv6 - C2C)

Classification by destinations

<table>
<thead>
<tr>
<th>Destination</th>
<th>IPv6 layer</th>
<th>C2C NET layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>A node in a specific vehicle</td>
<td>unicast</td>
<td>geo-unicast</td>
</tr>
<tr>
<td>Nodes in vehicles in area</td>
<td>multicast</td>
<td>geo-broadcast</td>
</tr>
<tr>
<td>Nodes in vehicles x hops away</td>
<td>multicast</td>
<td>topo-broadcast</td>
</tr>
<tr>
<td>A node in a certain vehicle in area</td>
<td>anycast</td>
<td>geo-anycast</td>
</tr>
</tbody>
</table>

- Area ID is an C2C NET ID that allocated to a static point

GeolIPv6 (Type, Destination, Payload)

- **IPv6 layer**
 - Unicast - geo-unicast
 - Multicast - geo-broadcast
 - Multicast - topo-broadcast
 - Anycast - geo-anycast

- **C2C NET layer**
 - Unicast address
 - Multicast address
 - Multicast address
 - Anycast address

- **C2C header**
 - Location table
 - Latitude
 - Longitude

- **Routing table**
 - IP next hop

- **Multicast address**
 - Last 112bit
 - Area ID
 - Radius

- **Hop limits**
 - Last 64-bits
 - Hop limit
IPv6-C2C NET Interface

- Use tap0 (tunnel interface)
 - C2C NET layer is between IPv6 and datalink layer
 - C2C NET is implemented in userland

Packet forwarding decision is taken in IP layer
(a) tap: C2C NET interface
(b) ath: Normal egress interface
(c) ip6tnl: NEMO tunnel over normal interface
(d) ip6tnl: NEMO tunnel over C2C NET interface
1. Add rule to the policy that the packet from MNP to routing table "9"

 \[\text{ip -6 rule add from 2001:1000:2000:3000::/64 fwmark 0x9 lookup 9 prio 301}\]

2. Add routing entry to table "9" for forwarding to tap0

 \[\text{ip -6 route add default from 2001:1000:2000:3000::/64 dev tap0 table 9 metric 10 proto 16}\]

3. Activate routing table "9" (Mark packet as "9")

 \[\text{ip6tables -t mangle -F PREROUTING}\]
 \[\text{ip6tables -A PREROUTING -t mangle -j MARK --set-mark 9}\]
Pre-experiment

- We tested tap0 interface
 - Packet from MNN to AP go through to tap0 interface
 - See the document for detail

```
# ip -6 rule add from 2001:1000:2000:3000::/64 fwmark 0x9 lookup 9 prio 301
# ip -6 route add default from 2001:1000:2000:3000::/64 dev tap0 table 9 metric 10 proto 16
# ip6tables -t mangle -F PREROUTING
# ip6tables -A PREROUTING -t mangle -j MARK --set-mark 9
```
System requirements

- CVIS package Release 7
- UMIP version 0.4??
- Ubuntu version 8.1
- Kernel version 2.6.??

- Netfilter

Networking
 → Networking options
 → Network packet filtering framework (Netfilter) [CONFIG_NETFILTER]
 → Core Netfilter Configuration
 → Netfilter Xtables support (required for ip_tables) [CONFIG_NETFILTER_XTABLES]
 → "MARK" target support [CONFIG_NETFILTER_XT_TARGET_MARK]
 → "mark" match support [CONFIG_NETFILTER_XT_MATCH_MARK]
 → IPv6: Netfilter Configuration (EXPERIMENTAL)
 → IP6 tables support (required for filtering) [CONFIG_IP6_NF_IPTABLES]
 → Packet mangling [CONFIG_IP6_NF_MANGLE]
Conclusion

- Overview of IPv6 over C2C NET
- Missing features
 - Next hop determination
- Design of IPv6 over C2C NET
 - Unicast using Geo-unicast
 - Multicast using Geo-broadcast
 - Multicast using Topo-broadcast
 - Anycast using Geo-anycast
- Interface management and IP forwarding
 - IPv6-C2C NET interface
 - Routing
 - Pre-experiment

- Thanks for your attention
 - Manabu Tsukada <manabu.tsukada@inria.fr>
 - Yacine Khaled <yacine.khaled@inria.fr>
 - Thierry Ernst <thierry.ernst@inria.fr>
Multicast in C2C NET
In a C2C NET → IP next hop is **OBU**
- The routing entry comes from In vehicle network discovery

Via the Internet → IP next hop is **RSU**
- The routing entry comes from Router Advertisement (RA)
Multicast - Geo-Broadcast

- **Around Type**
 - Multicast packet is delivered within some distance from the Source
 - Only radius is specified by IPv6 layer

- **Area type**
 - Multicast packet is delivered to an area
 - Area ID and radius is specified in IPv6 layer

<table>
<thead>
<tr>
<th>RFC</th>
<th>8</th>
<th>4</th>
<th>4</th>
<th>8</th>
<th>8</th>
<th>64</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>3306</td>
<td>11111111</td>
<td>flags</td>
<td>scope</td>
<td>reserved</td>
<td>plen</td>
<td>Network prefix</td>
<td>Group ID</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>64</td>
<td>Area ID</td>
<td>Radius</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:*
- **Around Type**:
 - Multicast packet is delivered within some distance from the Source.
 - Only radius is specified by IPv6 layer.

- **Area Type**:
 - Multicast packet is delivered to an area.
 - Area ID and radius is specified in IPv6 layer.

- **Location Table**:
 - Latitude
 - Longitude
 - Radius
Multicast over Geo-Broadcast

- Around type Geo-Broadcast
 - Radius is specified in multicast address
 - Latitude and longitude of C2C NET header is source's position
 - Receivers should subscribe to the multicast address with MLDv2 (RFC3810)
 - Router Advertisement is performed Around type by specifying the multicast address instead of all node multicast address

<table>
<thead>
<tr>
<th>Multicast address</th>
<th>Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF0E::500</td>
<td>500 m</td>
</tr>
<tr>
<td>FF0E::1000</td>
<td>1000 m</td>
</tr>
<tr>
<td>FE0E::1500</td>
<td>1500 m</td>
</tr>
</tbody>
</table>

Should Listener AUs subscribe all the multicast address such as: From FF0E::1 to FF0E::500?
Multicast over Geo-Broadcast

- Multicast Listener cannot subscribe the multicast address ahead of packet arrival
 - FF0E::AreaID:Radius
- Receiver side OBU overwrite destination address by ff02::1 (link-local all node multicast) for the issue

Can we allow that OBUs overwrite the destination address? AUs cannot know the original destination address
Anycast and Topo-Broadcast

- Multicast over topo-broadcast
 - Define special multicast address for topo-broadcast
 - Hop limit of IPv6 header transmitted to C2C NET header

- Anycast Over Geo-Anycast
 - Reserved IPv6 subnet anycast address (RFC 2526) cannot apply for C2C NET
 - MNP::/64 means a certain vehicle
 - There are no place to put position and radius value
 - Propose IPv6 Anycast address for C2C NET
 - fdff:ffff:ffff:Area-ID:Radius
 - Around mode omits Area-ID
 - AUs cannot configure the address ahead in Area mode
 - Receiver side OBU overwrite destination address by MNP::fdff:ffff:ffff:fffc (Anycast address in MNP)
Thanks for your attention
- Manabu Tsukada <manabu.tsukada@inria.fr>
- Yacine Khaled <yacine.khaled@inria.fr>
- Thierry Ernst <thierry.ernst@inria.fr>
Multicast over Geo-Broadcast

- **Notion of Area ID**
 - C2C NET ID allocated to an area
 - The set of (Latitude, longitude) can be resolve by Area ID

- **Destination multicast address**
 - Example: FF0E::C2C-7, FF0E::C2C-9

- **Issue for multicast grouping**
 - Receiver AUs cannot subscribe the multicast address ahead